Copied to
clipboard

?

G = C22⋊C4×C2×C10order 320 = 26·5

Direct product of C2×C10 and C22⋊C4

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C22⋊C4×C2×C10, C245C20, C25.3C10, (C23×C20)⋊5C2, (C23×C4)⋊2C10, C235(C2×C20), (C23×C10)⋊11C4, (C2×C20)⋊13C23, (C24×C10).2C2, C2.1(C23×C20), C23.58(C5×D4), C10.74(C23×C4), C24.28(C2×C10), C222(C22×C20), C22.57(D4×C10), (C2×C10).332C24, (C22×C20)⋊57C22, (C22×C10).219D4, C10.177(C22×D4), C22.5(C23×C10), C23.65(C22×C10), (C23×C10).88C22, (C22×C10).251C23, C2.1(D4×C2×C10), (C2×C4)⋊3(C22×C10), (C22×C4)⋊15(C2×C10), (C22×C10)⋊23(C2×C4), (C2×C10)⋊11(C22×C4), (C2×C10).679(C2×D4), SmallGroup(320,1514)

Series: Derived Chief Lower central Upper central

C1C2 — C22⋊C4×C2×C10
C1C2C22C2×C10C2×C20C5×C22⋊C4C10×C22⋊C4 — C22⋊C4×C2×C10
C1C2 — C22⋊C4×C2×C10
C1C23×C10 — C22⋊C4×C2×C10

Subgroups: 1010 in 674 conjugacy classes, 338 normal (12 characteristic)
C1, C2, C2 [×14], C2 [×8], C4 [×8], C22, C22 [×42], C22 [×56], C5, C2×C4 [×8], C2×C4 [×24], C23 [×43], C23 [×56], C10, C10 [×14], C10 [×8], C22⋊C4 [×16], C22×C4 [×12], C22×C4 [×8], C24, C24 [×14], C24 [×8], C20 [×8], C2×C10, C2×C10 [×42], C2×C10 [×56], C2×C22⋊C4 [×12], C23×C4 [×2], C25, C2×C20 [×8], C2×C20 [×24], C22×C10 [×43], C22×C10 [×56], C22×C22⋊C4, C5×C22⋊C4 [×16], C22×C20 [×12], C22×C20 [×8], C23×C10, C23×C10 [×14], C23×C10 [×8], C10×C22⋊C4 [×12], C23×C20 [×2], C24×C10, C22⋊C4×C2×C10

Quotients:
C1, C2 [×15], C4 [×8], C22 [×35], C5, C2×C4 [×28], D4 [×8], C23 [×15], C10 [×15], C22⋊C4 [×16], C22×C4 [×14], C2×D4 [×12], C24, C20 [×8], C2×C10 [×35], C2×C22⋊C4 [×12], C23×C4, C22×D4 [×2], C2×C20 [×28], C5×D4 [×8], C22×C10 [×15], C22×C22⋊C4, C5×C22⋊C4 [×16], C22×C20 [×14], D4×C10 [×12], C23×C10, C10×C22⋊C4 [×12], C23×C20, D4×C2×C10 [×2], C22⋊C4×C2×C10

Generators and relations
 G = < a,b,c,d,e | a2=b10=c2=d2=e4=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, ece-1=cd=dc, de=ed >

Smallest permutation representation
On 160 points
Generators in S160
(1 86)(2 87)(3 88)(4 89)(5 90)(6 81)(7 82)(8 83)(9 84)(10 85)(11 120)(12 111)(13 112)(14 113)(15 114)(16 115)(17 116)(18 117)(19 118)(20 119)(21 145)(22 146)(23 147)(24 148)(25 149)(26 150)(27 141)(28 142)(29 143)(30 144)(31 127)(32 128)(33 129)(34 130)(35 121)(36 122)(37 123)(38 124)(39 125)(40 126)(41 106)(42 107)(43 108)(44 109)(45 110)(46 101)(47 102)(48 103)(49 104)(50 105)(51 71)(52 72)(53 73)(54 74)(55 75)(56 76)(57 77)(58 78)(59 79)(60 80)(61 100)(62 91)(63 92)(64 93)(65 94)(66 95)(67 96)(68 97)(69 98)(70 99)(131 151)(132 152)(133 153)(134 154)(135 155)(136 156)(137 157)(138 158)(139 159)(140 160)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 56)(2 57)(3 58)(4 59)(5 60)(6 51)(7 52)(8 53)(9 54)(10 55)(11 160)(12 151)(13 152)(14 153)(15 154)(16 155)(17 156)(18 157)(19 158)(20 159)(21 34)(22 35)(23 36)(24 37)(25 38)(26 39)(27 40)(28 31)(29 32)(30 33)(41 62)(42 63)(43 64)(44 65)(45 66)(46 67)(47 68)(48 69)(49 70)(50 61)(71 81)(72 82)(73 83)(74 84)(75 85)(76 86)(77 87)(78 88)(79 89)(80 90)(91 106)(92 107)(93 108)(94 109)(95 110)(96 101)(97 102)(98 103)(99 104)(100 105)(111 131)(112 132)(113 133)(114 134)(115 135)(116 136)(117 137)(118 138)(119 139)(120 140)(121 146)(122 147)(123 148)(124 149)(125 150)(126 141)(127 142)(128 143)(129 144)(130 145)
(1 67)(2 68)(3 69)(4 70)(5 61)(6 62)(7 63)(8 64)(9 65)(10 66)(11 21)(12 22)(13 23)(14 24)(15 25)(16 26)(17 27)(18 28)(19 29)(20 30)(31 157)(32 158)(33 159)(34 160)(35 151)(36 152)(37 153)(38 154)(39 155)(40 156)(41 51)(42 52)(43 53)(44 54)(45 55)(46 56)(47 57)(48 58)(49 59)(50 60)(71 106)(72 107)(73 108)(74 109)(75 110)(76 101)(77 102)(78 103)(79 104)(80 105)(81 91)(82 92)(83 93)(84 94)(85 95)(86 96)(87 97)(88 98)(89 99)(90 100)(111 146)(112 147)(113 148)(114 149)(115 150)(116 141)(117 142)(118 143)(119 144)(120 145)(121 131)(122 132)(123 133)(124 134)(125 135)(126 136)(127 137)(128 138)(129 139)(130 140)
(1 12 51 40)(2 13 52 31)(3 14 53 32)(4 15 54 33)(5 16 55 34)(6 17 56 35)(7 18 57 36)(8 19 58 37)(9 20 59 38)(10 11 60 39)(21 50 155 66)(22 41 156 67)(23 42 157 68)(24 43 158 69)(25 44 159 70)(26 45 160 61)(27 46 151 62)(28 47 152 63)(29 48 153 64)(30 49 154 65)(71 126 86 111)(72 127 87 112)(73 128 88 113)(74 129 89 114)(75 130 90 115)(76 121 81 116)(77 122 82 117)(78 123 83 118)(79 124 84 119)(80 125 85 120)(91 141 101 131)(92 142 102 132)(93 143 103 133)(94 144 104 134)(95 145 105 135)(96 146 106 136)(97 147 107 137)(98 148 108 138)(99 149 109 139)(100 150 110 140)

G:=sub<Sym(160)| (1,86)(2,87)(3,88)(4,89)(5,90)(6,81)(7,82)(8,83)(9,84)(10,85)(11,120)(12,111)(13,112)(14,113)(15,114)(16,115)(17,116)(18,117)(19,118)(20,119)(21,145)(22,146)(23,147)(24,148)(25,149)(26,150)(27,141)(28,142)(29,143)(30,144)(31,127)(32,128)(33,129)(34,130)(35,121)(36,122)(37,123)(38,124)(39,125)(40,126)(41,106)(42,107)(43,108)(44,109)(45,110)(46,101)(47,102)(48,103)(49,104)(50,105)(51,71)(52,72)(53,73)(54,74)(55,75)(56,76)(57,77)(58,78)(59,79)(60,80)(61,100)(62,91)(63,92)(64,93)(65,94)(66,95)(67,96)(68,97)(69,98)(70,99)(131,151)(132,152)(133,153)(134,154)(135,155)(136,156)(137,157)(138,158)(139,159)(140,160), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,56)(2,57)(3,58)(4,59)(5,60)(6,51)(7,52)(8,53)(9,54)(10,55)(11,160)(12,151)(13,152)(14,153)(15,154)(16,155)(17,156)(18,157)(19,158)(20,159)(21,34)(22,35)(23,36)(24,37)(25,38)(26,39)(27,40)(28,31)(29,32)(30,33)(41,62)(42,63)(43,64)(44,65)(45,66)(46,67)(47,68)(48,69)(49,70)(50,61)(71,81)(72,82)(73,83)(74,84)(75,85)(76,86)(77,87)(78,88)(79,89)(80,90)(91,106)(92,107)(93,108)(94,109)(95,110)(96,101)(97,102)(98,103)(99,104)(100,105)(111,131)(112,132)(113,133)(114,134)(115,135)(116,136)(117,137)(118,138)(119,139)(120,140)(121,146)(122,147)(123,148)(124,149)(125,150)(126,141)(127,142)(128,143)(129,144)(130,145), (1,67)(2,68)(3,69)(4,70)(5,61)(6,62)(7,63)(8,64)(9,65)(10,66)(11,21)(12,22)(13,23)(14,24)(15,25)(16,26)(17,27)(18,28)(19,29)(20,30)(31,157)(32,158)(33,159)(34,160)(35,151)(36,152)(37,153)(38,154)(39,155)(40,156)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(71,106)(72,107)(73,108)(74,109)(75,110)(76,101)(77,102)(78,103)(79,104)(80,105)(81,91)(82,92)(83,93)(84,94)(85,95)(86,96)(87,97)(88,98)(89,99)(90,100)(111,146)(112,147)(113,148)(114,149)(115,150)(116,141)(117,142)(118,143)(119,144)(120,145)(121,131)(122,132)(123,133)(124,134)(125,135)(126,136)(127,137)(128,138)(129,139)(130,140), (1,12,51,40)(2,13,52,31)(3,14,53,32)(4,15,54,33)(5,16,55,34)(6,17,56,35)(7,18,57,36)(8,19,58,37)(9,20,59,38)(10,11,60,39)(21,50,155,66)(22,41,156,67)(23,42,157,68)(24,43,158,69)(25,44,159,70)(26,45,160,61)(27,46,151,62)(28,47,152,63)(29,48,153,64)(30,49,154,65)(71,126,86,111)(72,127,87,112)(73,128,88,113)(74,129,89,114)(75,130,90,115)(76,121,81,116)(77,122,82,117)(78,123,83,118)(79,124,84,119)(80,125,85,120)(91,141,101,131)(92,142,102,132)(93,143,103,133)(94,144,104,134)(95,145,105,135)(96,146,106,136)(97,147,107,137)(98,148,108,138)(99,149,109,139)(100,150,110,140)>;

G:=Group( (1,86)(2,87)(3,88)(4,89)(5,90)(6,81)(7,82)(8,83)(9,84)(10,85)(11,120)(12,111)(13,112)(14,113)(15,114)(16,115)(17,116)(18,117)(19,118)(20,119)(21,145)(22,146)(23,147)(24,148)(25,149)(26,150)(27,141)(28,142)(29,143)(30,144)(31,127)(32,128)(33,129)(34,130)(35,121)(36,122)(37,123)(38,124)(39,125)(40,126)(41,106)(42,107)(43,108)(44,109)(45,110)(46,101)(47,102)(48,103)(49,104)(50,105)(51,71)(52,72)(53,73)(54,74)(55,75)(56,76)(57,77)(58,78)(59,79)(60,80)(61,100)(62,91)(63,92)(64,93)(65,94)(66,95)(67,96)(68,97)(69,98)(70,99)(131,151)(132,152)(133,153)(134,154)(135,155)(136,156)(137,157)(138,158)(139,159)(140,160), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,56)(2,57)(3,58)(4,59)(5,60)(6,51)(7,52)(8,53)(9,54)(10,55)(11,160)(12,151)(13,152)(14,153)(15,154)(16,155)(17,156)(18,157)(19,158)(20,159)(21,34)(22,35)(23,36)(24,37)(25,38)(26,39)(27,40)(28,31)(29,32)(30,33)(41,62)(42,63)(43,64)(44,65)(45,66)(46,67)(47,68)(48,69)(49,70)(50,61)(71,81)(72,82)(73,83)(74,84)(75,85)(76,86)(77,87)(78,88)(79,89)(80,90)(91,106)(92,107)(93,108)(94,109)(95,110)(96,101)(97,102)(98,103)(99,104)(100,105)(111,131)(112,132)(113,133)(114,134)(115,135)(116,136)(117,137)(118,138)(119,139)(120,140)(121,146)(122,147)(123,148)(124,149)(125,150)(126,141)(127,142)(128,143)(129,144)(130,145), (1,67)(2,68)(3,69)(4,70)(5,61)(6,62)(7,63)(8,64)(9,65)(10,66)(11,21)(12,22)(13,23)(14,24)(15,25)(16,26)(17,27)(18,28)(19,29)(20,30)(31,157)(32,158)(33,159)(34,160)(35,151)(36,152)(37,153)(38,154)(39,155)(40,156)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(71,106)(72,107)(73,108)(74,109)(75,110)(76,101)(77,102)(78,103)(79,104)(80,105)(81,91)(82,92)(83,93)(84,94)(85,95)(86,96)(87,97)(88,98)(89,99)(90,100)(111,146)(112,147)(113,148)(114,149)(115,150)(116,141)(117,142)(118,143)(119,144)(120,145)(121,131)(122,132)(123,133)(124,134)(125,135)(126,136)(127,137)(128,138)(129,139)(130,140), (1,12,51,40)(2,13,52,31)(3,14,53,32)(4,15,54,33)(5,16,55,34)(6,17,56,35)(7,18,57,36)(8,19,58,37)(9,20,59,38)(10,11,60,39)(21,50,155,66)(22,41,156,67)(23,42,157,68)(24,43,158,69)(25,44,159,70)(26,45,160,61)(27,46,151,62)(28,47,152,63)(29,48,153,64)(30,49,154,65)(71,126,86,111)(72,127,87,112)(73,128,88,113)(74,129,89,114)(75,130,90,115)(76,121,81,116)(77,122,82,117)(78,123,83,118)(79,124,84,119)(80,125,85,120)(91,141,101,131)(92,142,102,132)(93,143,103,133)(94,144,104,134)(95,145,105,135)(96,146,106,136)(97,147,107,137)(98,148,108,138)(99,149,109,139)(100,150,110,140) );

G=PermutationGroup([(1,86),(2,87),(3,88),(4,89),(5,90),(6,81),(7,82),(8,83),(9,84),(10,85),(11,120),(12,111),(13,112),(14,113),(15,114),(16,115),(17,116),(18,117),(19,118),(20,119),(21,145),(22,146),(23,147),(24,148),(25,149),(26,150),(27,141),(28,142),(29,143),(30,144),(31,127),(32,128),(33,129),(34,130),(35,121),(36,122),(37,123),(38,124),(39,125),(40,126),(41,106),(42,107),(43,108),(44,109),(45,110),(46,101),(47,102),(48,103),(49,104),(50,105),(51,71),(52,72),(53,73),(54,74),(55,75),(56,76),(57,77),(58,78),(59,79),(60,80),(61,100),(62,91),(63,92),(64,93),(65,94),(66,95),(67,96),(68,97),(69,98),(70,99),(131,151),(132,152),(133,153),(134,154),(135,155),(136,156),(137,157),(138,158),(139,159),(140,160)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,56),(2,57),(3,58),(4,59),(5,60),(6,51),(7,52),(8,53),(9,54),(10,55),(11,160),(12,151),(13,152),(14,153),(15,154),(16,155),(17,156),(18,157),(19,158),(20,159),(21,34),(22,35),(23,36),(24,37),(25,38),(26,39),(27,40),(28,31),(29,32),(30,33),(41,62),(42,63),(43,64),(44,65),(45,66),(46,67),(47,68),(48,69),(49,70),(50,61),(71,81),(72,82),(73,83),(74,84),(75,85),(76,86),(77,87),(78,88),(79,89),(80,90),(91,106),(92,107),(93,108),(94,109),(95,110),(96,101),(97,102),(98,103),(99,104),(100,105),(111,131),(112,132),(113,133),(114,134),(115,135),(116,136),(117,137),(118,138),(119,139),(120,140),(121,146),(122,147),(123,148),(124,149),(125,150),(126,141),(127,142),(128,143),(129,144),(130,145)], [(1,67),(2,68),(3,69),(4,70),(5,61),(6,62),(7,63),(8,64),(9,65),(10,66),(11,21),(12,22),(13,23),(14,24),(15,25),(16,26),(17,27),(18,28),(19,29),(20,30),(31,157),(32,158),(33,159),(34,160),(35,151),(36,152),(37,153),(38,154),(39,155),(40,156),(41,51),(42,52),(43,53),(44,54),(45,55),(46,56),(47,57),(48,58),(49,59),(50,60),(71,106),(72,107),(73,108),(74,109),(75,110),(76,101),(77,102),(78,103),(79,104),(80,105),(81,91),(82,92),(83,93),(84,94),(85,95),(86,96),(87,97),(88,98),(89,99),(90,100),(111,146),(112,147),(113,148),(114,149),(115,150),(116,141),(117,142),(118,143),(119,144),(120,145),(121,131),(122,132),(123,133),(124,134),(125,135),(126,136),(127,137),(128,138),(129,139),(130,140)], [(1,12,51,40),(2,13,52,31),(3,14,53,32),(4,15,54,33),(5,16,55,34),(6,17,56,35),(7,18,57,36),(8,19,58,37),(9,20,59,38),(10,11,60,39),(21,50,155,66),(22,41,156,67),(23,42,157,68),(24,43,158,69),(25,44,159,70),(26,45,160,61),(27,46,151,62),(28,47,152,63),(29,48,153,64),(30,49,154,65),(71,126,86,111),(72,127,87,112),(73,128,88,113),(74,129,89,114),(75,130,90,115),(76,121,81,116),(77,122,82,117),(78,123,83,118),(79,124,84,119),(80,125,85,120),(91,141,101,131),(92,142,102,132),(93,143,103,133),(94,144,104,134),(95,145,105,135),(96,146,106,136),(97,147,107,137),(98,148,108,138),(99,149,109,139),(100,150,110,140)])

Matrix representation G ⊆ GL5(𝔽41)

400000
01000
00100
000400
000040
,
10000
01000
004000
000370
000037
,
400000
01000
00100
00010
000040
,
10000
01000
00100
000400
000040
,
10000
032000
00100
00001
00010

G:=sub<GL(5,GF(41))| [40,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,40,0,0,0,0,0,40],[1,0,0,0,0,0,1,0,0,0,0,0,40,0,0,0,0,0,37,0,0,0,0,0,37],[40,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,40],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,40,0,0,0,0,0,40],[1,0,0,0,0,0,32,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0] >;

200 conjugacy classes

class 1 2A···2O2P···2W4A···4P5A5B5C5D10A···10BH10BI···10CN20A···20BL
order12···22···24···4555510···1010···1020···20
size11···12···22···211111···12···22···2

200 irreducible representations

dim111111111122
type+++++
imageC1C2C2C2C4C5C10C10C10C20D4C5×D4
kernelC22⋊C4×C2×C10C10×C22⋊C4C23×C20C24×C10C23×C10C22×C22⋊C4C2×C22⋊C4C23×C4C25C24C22×C10C23
# reps11221164488464832

In GAP, Magma, Sage, TeX

C_2^2\rtimes C_4\times C_2\times C_{10}
% in TeX

G:=Group("C2^2:C4xC2xC10");
// GroupNames label

G:=SmallGroup(320,1514);
// by ID

G=gap.SmallGroup(320,1514);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-5,-2,-2,1120,1149]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^10=c^2=d^2=e^4=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,e*c*e^-1=c*d=d*c,d*e=e*d>;
// generators/relations

׿
×
𝔽